

Fig. 1. ORTEP (Johnson, 1976) drawing and numbering scheme. The ellipsoids are drawn at the 30% probability surface.

Related literature. The syntheses, reactions and structural aspects of allyl complexes of rhodium have been the subject of numerous reviews; recent surveys include those by Collman, Hegedus, Norton & Finke (1987) and by Hughes (1982). The structure reported here can be compared to that of a cyclooctenyl– rhodium complex (Pickardt & Stuhler, 1980) and

that of a methylallyl-rhodium complex (Hewitt & deBoer, 1968).

We thank the National Science Foundation and the State of Arkansas for financial support.

References

- COLLMAN, J. P., HEGEDUS, L. S., NORTON, J. R. & FINKE, R. G. (1987). Principles and Applications of Organotransition Metal Chemistry, pp. 175–182. Mill Valley, California: University Science Books.
- Enraf-Nonius (1982). Structure Determination Package. Enraf-Nonius, Delft, The Netherlands.
- HEWITT, T. G. & DEBOER, J. J. (1968). J. Chem. Soc. Chem. Commun. pp. 1413-1414.
- HUGHES, R. P. (1982). Comprehensive Organometallic Chemistry, Vol. 5, edited by G. WILKINSON, F. G. A. STONE & E. W. ABEL, pp. 493-506. Oxford: Pergamon Press.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
- JOHNSON, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- PICKARDT, J. & STUHLER, H.-O. (1980). Chem. Ber. 113, 1623–1625.

Acta Cryst. (1990). C46, 496-498

$(\eta^2-1, 3-\text{Di-tert-butyl-2}, 5-\text{dioxo-3-cyclopentene-1-carbonitrile})$ bis(triphenylphosphine)platinum(0)-Diethyl Ether

BY ARNOLD L. RHEINGOLD* AND CYNTHIA J. BALDACCHINI

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA

AND PHILIP D. MACKLIN AND GREGORY L. GEOFFROY

Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA

(Received 17 July 1989; accepted 24 October 1989)

Abstract. [Pt(C₁₄H₁₉NO₂){P(C₆H₅)₃}₂].C₄H₁₀O, $M_r = 1027 \cdot 1$, triclinic, PI, $a = 11 \cdot 240$ (4), $b = 13 \cdot 748$ (5), $c = 16 \cdot 224$ (6) Å, $\alpha = 76 \cdot 77$ (3), $\beta = 79 \cdot 56$ (3), $\gamma = 83 \cdot 09$ (3)°, V = 2392 (12) Å³, Z = 2, $D_x = 1 \cdot 426$ g cm⁻³, λ (Mo $K\alpha$) = 0.71073 Å, $\mu = 31 \cdot 9$ cm⁻¹, F(000) = 1044, T = 296 K, $R_F = 4 \cdot 11\%$ for 5014 observed reflections and 479 parameters. The structure is consistent with a Pt⁰ olefin diphosphine complex. The Pt–olefin plane is twisted 11 \cdot 4° out of the PtP₂ plane by the presence of the bulky *tert*-Bu group on the cyclopentenedione ring. The dihedral angle between the ring plane and the Pt–olefin plane is 95 $\cdot 8^{\circ}$. The two Pt–C distances differ

Experimental. The title compound was obtained by the addition of the ligand (see below) to $[Pt(C_2H_4)(PPh_3)_2]$ (Macklin, 1988). Yellow crystals

0108-2701/90/030496-03\$03.00

© 1990 International Union of Crystallography

significantly: the distance to the ring position bearing the *tert*-Bu group is $2 \cdot 170$ (7) Å, while the distance to the unsubstituted C atom is much shorter, $2 \cdot 121$ (8) Å.

^{*} Address correspondence to this author.

C(41)-C(42)

Table 1. Atomic coordinates $(\times 10^4)$ and equivalent isotropic thermal parameters $(Å^2 \times 10^3)$

 $U_{\rm eq}$ is defined as one third of the trace of the orthogonalized U_{ii} tensor.

	x	v	7	U.,
Pt	2646.3 (3)	7807.0 (2)	3151.8 (2)	53.5(1)
P(1)	4618 (2)	7844 (2)	3371 (1)	57 (1)
$\mathbf{P}(2)$	2767 (2)	6992 (2)	2039 (1)	58 (L)
O(1)	- 407 (5)	8740 (4)	2559 (4)	73 (2)
O(2)	2301 (6)	10247 (5)	3730 (4)	85 (3)
O(3)	7793 (10)	3787 (10)	1320 (9)	182 (7)
N(1)	2162 (8)	10354 (7)	1339 (6)	94 (4)
C(1)	6686 (4)	8696 (4)	2257 (4)	70 (4)
C(2)	7233	9471	1648	81 (4)
C(3)	6554	10370	1381	82 (4)
C(4)	5328	10494	1724	82 (4)
C(3)	4/81	9/18	2333	73 (4) 61 (2)
C(0)	5602 (5)	8713 (A)	2000	79 (4)
C(3)	5694	8873	5293	88 (5)
C(9)	4909	8437	6017	100 (5)
C(10)	4032	7843	5937	90 (5)
C(11)	3940	7683	5132	78 (4)
C(12)	4725	8119	4409	63 (3)
C(13)	6104 (5)	6388 (4)	2613 (3)	76 (4)
C(14)	6830	5489	2618	90 (5)
C(15)	7083	4886	3393	102 (5)
C(16)	6611	5181	4163	106 (5)
C(17)	5886	6079	4158	90 (4)
C(18)	2032 4508 (5)	0083 8172 (A)	2282 047 (4)	64 (3) 69 (4)
C(20)	5556	8360	347	78 (4)
C(21)	6219	7582	1	93 (5)
C(22)	5834	6615	256	91 (5)
C(23)	4785	6427	856	77 (4)
C(24)	4122	7206	1201	61 (3)
C(25)	3153 (5)	5186 (4)	3166 (3)	71 (4)
C(26)	3216	4147	3454	94 (5)
C(27)	2922	3541	2951	92 (5)
C(28) C(20)	2000	39/4 5012	2139	93 (5) 78 (4)
C(29) C(30)	2302	5619	2374	78 (4) 65 (3)
C(30)	485 (5)	6833 (4)	1558 (3)	77 (4)
C(32)	- 461	7175	1087	85 (4)
C(33)	- 384	8055	456	86 (4)
C(34)	639	8592	295	77 (4)
C(35)	1586	8250	766	69 (4)
C(36)	1509	7371	1397	64 (3)
C(41)	772 (6)	8128 (6)	3703 (5)	58 (3)
C(42)	1599 (7)	8602 (6)	4050 (5)	62 (3)
C(43)	886 (7)	9028 (7)	2275 (5)	60 (3)
C(44)	326 (7)	8856 (6)	2075 (5)	63 (3)
C(45)	19 (7)	7279 (7)	4260 (6)	72 (4)
C(47)	694 (10)	6651 (8)	4966 (7)	100 (5)
C(48)	- 248 (9)	6561 (7)	3719 (7)	92 (4)
C(49)	- 1183 (9)	7745 (8)	4656 (7)	103 (5)
C(50)	- 117 (8)	10776 (7)	2998 (6)	75 (4)
C(51)	464 (11)	11754 (7)	2920 (8)	111 (6)
C(52)	- 945 (10)	10979 (8)	2317 (7)	103 (5)
C(53)	- 895 (10)	10494 (9)	3897 (7)	108 (5)
C(54)	1598 (8)	10152 (7)	2018 (6)	70 (4)
C(33)	9/3/(1/)	4142 (15)	1108 (13)	224 (13)
C(50) C(57)	0//0(10) 6865(15)	3465 (16)	1001 (11)	210 (14) 188 (11)
C(58)	5873 (15)	3291 (15)	1595 (11)	192 (11)
C(30)	5675 (15)	5271 (15)		

Pt-P(1)	2.316 (2)	C(41)-C(45)	1.460 (11)
Pt-P(2)	2.310 (2)	C(41)—C(46)	1.540 (11)
Pt-C(41)	2.170 (7)	C(42)—C(43)	1.446 (11)
Pt-C(42)	2.121 (8)	C(43)—C(44)	1.558 (12)
P(1)-C(6)	1.835 (5)	C(44)-C(45)	1.570 (12)
P(1) - C(12)	1.834 (7)	C(44)—C(50)	1.588 (12)
P(1)C(18)	1.846 (6)	C(44)C(54)	1.465 (11)
P(2)—C(24)	1.852 (5)	C(46)—C(47)	1.530 (14)
P(2)—C(30)	1.839 (6)	C(46)—C(48)	1.548 (16)
P(2)-C(36)	1.861 (6)	C(46)—C(49)	1.521 (13)
O(1)-C(45)	1.225 (11)	C(50)—C(51)	1.534 (15)
O(2)—C(43)	1.228 (12)	C(50)—C(52)	1.528 (16)
O(3)—C(56)	1.272 (21)	C(50)—C(53)	1.550 (13)
O(3)-C(57)	1.402 (25)	C(55)-C(56)	1.426 (32)
N(1)-C(54)	1.158 (12)	C(57)—C(58)	1.341 (22)

Table 2. Bond lengths (Å)

1.451 (13)

Fig. 1. The molecular structure for $[Pt(C_{14}H_{19}NO_2){P(C_6H_5)_3}_2]$. $C_4H_{10}O$ with the atom-labeling scheme.

Fig. 2. Unit-cell packing diagram.

from hexane $(0.30 \times 0.21 \times 0.13 \text{ mm})$; Nicolet R3m diffractometer with graphite monochromator; ω scans; lattice parameters from least-squares fit of 25 reflections ($30 \le 2\theta \le 50^\circ$); empirical absorption correction ($\mu = 31.9 \text{ cm}^{-1}$, $T_{\text{max}}/T_{\text{min}} = 3.75$); $2\theta_{\text{max}} =$

 48° ($h = \pm 13$, $k = \pm 16$, l = +18); $\overline{5}11$, 271, 148 standard reflections for 6460 reflections collected with 3% decay, 6192 unique $(R_{int} = 2.11\%)$, 5014 observed with $F_o > 5\sigma(F_o)$, 1178 unobserved reflection. tions. Direct-methods (SOLV) structure solution;

Table 3. Bond angles (°)

P(1)PtP(2)	106-6 (1)	Pt-C(41)-C(46)	120.5 (5)
P(1) - Pt - C(41)	141.9 (2)	C(42) - C(41) - C(46)	122.1 (7)
P(2)-Pt-C(41)	111.1 (2)	C(45)-C(41)-C(46)	122.4 (7)
P(1) - Pt - C(42)	103.4 (2)	Pt-C(42)-C(41)	72.1 (5)
P(2) - Pt - C(42)	150.0 (2)	Pt-C(42)-C(43)	101-2 (5)
C(41) - Pt - C(42)	39.5 (3)	C(41) - C(42) - C(43)	110.4 (7)
Pt - P(1) - C(6)	114.1 (2)	O(2) - C(43) - C(42)	127.2 (8)
Pt - P(1) - C(12)	113.9 (2)	O(2)-C(43)-C(44)	122.9 (7)
C(6) - P(1) - C(12)	103.0 (3)	C(42)— $C(43)$ — $C(44)$	109.8 (8)
Pt - P(1) - C(18)	117.6 (2)	C(43)-C(44)-C(45)	101.3 (6)
C(6) - P(1) - C(18)	105.0 (2)	C(43)-C(44)-C(50)	112.6 (7)
$C(12) \rightarrow P(1) \rightarrow C(18)$	101.4 (3)	C(45)—C(44)—C(50)	112.6 (6)
Pt-P(2)-C(24)	115.2 (2)	C(43)-C(44)-C(54)	111.7 (7)
Pt-P(2)-C(30)	114.3 (2)	C(45)-C(44)-C(54)	110.7 (7)
C(24) - P(2) - C(30)	104.0 (2)	C(50)-C(44)-C(54)	107.9 (6)
Pt-P(2)-C(36)	114.7 (2)	O(1) - C(45) - C(41)	127.6 (8)
P(24)-P(2)-C(36)	101.9 (3)	O(1) - C(45) - C(44)	122.3 (7)
C(30) - OP(2) - C(36)	105.3 (3)	C(41)— $C(45)$ — $C(44)$	110.0 (7)
C(56)-O(3)-C(57)	115.9 (17)	C(41) - C(46) - C(47)	111.0 (8)
P(1) - C(6) - C(1)	124.4 (2)	C(41) - C(46) - C(48)	111.5 (7)
P(1) - C(6) - C(5)	115.6 (2)	C(47) - C(46) - C(48)	107.4 (8)
P(1) - C(12) - C(7)	121.4 (2)	C(41) - C(46) - C(49)	108.5 (7)
P(1) - C(12) - C(11)	118.6 (2)	C(47)-C(46)-C(49)	109.9 (8)
P(1) - C(18) - C(13)	119.6 (2)	C(48)-C(46)-C(49)	108.5 (8)
P(1) - C(18) - C(17)	120.4 (2)	C(44)—C(50)—C(51)	111.2 (8)
P(2) - C(24) - C(19)	117.9 (2)	C(44) - C(50) - C(52)	111-5 (8)
P(2) - C(24) - C(23)	122.0 (2)	C(51) - C(50) - C(52)	106.8 (8)
P(2) - C(30) - C(25)	116-9 (2)	C(44)-C(50)-C(53)	108.6 (7)
P(2)-C(30)-C(29)	123.1 (2)	C(51)-C(50)-C(53)	109.6 (9)
P(2) - C(36) - C(31)	122.2 (2)	C(52)-C(50)-C(53)	109.0 (8)
P(2)-C(36)-C(35)	117.8 (2)	N(1) - C(54) - C(44)	179.2 (10)
Pt-C(41)-C(42)	68·4 (4)	O(3) C(56) C(55)	114.9 (20)
Pt-C(41)-C(45)	101.6 (5)	O(3)-C(57)-C(58)	112.3 (17)
C(42) C(41) C(45)	108·5 (7)		- (- /
	• •		

least-squares refinement on 479 parameters; all non-H atoms anisotropic, H atoms idealized and updated (C—H = 0.96 Å, U = 1.2U of attached C),

phenyl rings constrained to rigid hexagons (C—C = 1.395 Å). $R_F = 4.11\%$, $wR_F = 5.00\%$, S = 1.072, $w^{-1} = \sigma^2(F_o) + gF_o^2$, g = 0.001; $(\Delta/\sigma)_{max} = 0.18$; $\Delta\rho_{max} = 1.075$, $\Delta\rho_{min} = -0.407$ eÅ⁻³; atomic scattering factors from *International Tables for X-ray Crystallography* (1974); SHELXTL computer program (Sheldrick, 1983).

Atomic coordinates and equivalent isotropic thermal parameters are given in Table 1. Bond lengths are given in Table 2 and angles are given in Table 3. Fig. 1 shows the labeled molecular structure of the compound and Fig. 2 shows the unit-cell packing diagram.*

Related literature. To our knowledge, no other structures of cyclopentenedione platinum diphosphine complexes have been published.

* Lists of structure factors, anisotropic thermal parameters and full lists of bond lengths have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52368 (35 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor, Kluwer Academic Publishers, Dordrecht.)
- MACKLIN, P. D. (1988). PhD dissertation, The Pennsylvania State Univ., USA.

SHELDRICK, G. M. (1983). SHELXTL Users Manual, version 4.1. Nicolet XRD Corporation, Madison, WI, USA.

Acta Cryst. (1990). C46, 498-500

Carbonyl(2-cyano-3,3-dimethylbutanoic acid-N)(η^5 -cyclopentadienyl)-(triphenylphosphine)iron(I) Tetrafluoroborate

BY ARNOLD L. RHEINGOLD* AND CYNTHIA J. BALDACCHINI

Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA

AND GREGORY L. GEOFFROY AND PHILIP D. MACKLIN

Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA

(Received 17 July 1989; accepted 24 October 1989)

Abstract. [Fe(C₅H₅)(CO)(C₂H₁₁NO₂){P(C₆H₅)₃}] [BF₄], $M_r = 627 \cdot 2$, triclinic, $P\overline{1}$, $a = 11 \cdot 123$ (5), $b = 12 \cdot 085$ (6), $c = 12 \cdot 855$ (6) Å, $\alpha = 101 \cdot 91$ (4), $\beta = 93 \cdot 67$ (4), $\gamma = 108 \cdot 43$ (3)°, $V = 1588 \cdot 4$ (12) Å³, Z = 2, $D_x = 1 \cdot 311$ g cm⁻³, λ (Mo K α) = 0.71073 Å, $\mu = 5 \cdot 71$ cm⁻¹, F(000) = 648, T = 296 K, $R_F = 5 \cdot 29\%$ for

0108-2701/90/030498-03\$03.00

5411 observed reflections and 343 parameters. The coordination geometry at iron in the cation is the expected three-legged piano-stool type; if the cyclopentadienyl ring is considered to occupy three coordination sites, the overall geometry is approximately octahedral. Hydrogen bonding occurs between the acidic hydrogen of the carboxy group and one of the F atoms of the counterion: $Hx \cdots F(1)$

© 1990 International Union of Crystallography

^{*} Address correspondence to this author.